PARALLEL-DATA-FREE, MANY-TO-MANY VOICE CONVERSION
USING AN ADAPTIVE RESTRICTED BOLTZMANN MACHINE

L Toru Nakashika, 2Tezfsuya Takiguchi, 2Yasuo Ariki

!Graduate School of Information Systems, The University of Electro-Communications, Japan
2Organization of Advanced Science and Technology, Kobe University, Japan

nakashika@uec.ac. jp,

ABSTRACT

Voice conversion (VC) is a technique where only speaker-
specific information in source speech is converted while
preserving the associated phonological information. Most of
the existing VC methods rely on using parallel data—pairs
of speech data from the source and target speakers uttering
the same sentences—when training the models. However,
the use of parallel data causes several problems; firstly, the
data used for the training is limited to the pre-defined sen-
tences. Secondly, the trained model is only applied to the
speaker pair used in the training. In this paper, we propose a
novel probabilistic model called an adaptive restricted Boltz-
mann machine (ARBM) for VC between arbitrary speakers
without the need to use parallel data. An ARBM models a
joint distribution of visible units (set as acoustic features),
hidden units, and speaker-identity units with the speaker-
dependent connections between the visible and hidden units.
The visible-hidden connections are defined as the product
of the speaker-independent matrix and speaker-adaptive ma-
trices so that the speech signal can be decomposed into
speaker-specific information and the remaining information
(that is, phonological information). Voice conversion using
an ARBM is achieved by switching the speaker-specific in-
formation of a source speaker into that of a target speaker
with the phonological information unchanged.

Index Terms— Voice conversion, restricted Boltzmann
machine, speaker adaptation, non-parallel training, many-to-
many conversion

1. INTRODUCTION

In recent years, voice conversion (VC), which is a technique
used to change speaker-specific information in the speech of
a source speaker into that of a target speaker while retain-
ing linguistic information, has been garnering much atten-
tion since the VC techniques can be applied to various tasks
[1, 2, 3, 4, 5]. Various statistical approaches to VC have been
studied so far as discussed in [6, 7]. Among these approaches,
the Gaussian mixture model (GMM)-based mapping method
[8] is most widely used, and a number of improvements have
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been proposed [9, 10, 11]. Other VC methods, such as ap-
proaches based on non-negative matrix factorization (NMF)
[12, 13], neural networks (NNs) [14], restricted Boltzmann
machines (RBMs) [15, 16], and deep learning [17, 18], have
been also proposed.

However, the above-mentioned approaches require paral-
lel data (aligned speech data from the source and the target
speakers so that each frame of the source speaker’s data cor-
responds to that of the target speaker) for training the models,
which leads to several problems. First, the data is limited
to pre-defined articles (both speakers must utter the same arti-
cles). Second, the trained model is only applied to the speaker
pair used in the training, and it is difficult to reuse the model
on the conversion of another speaker pair. Third, the training
data (the parallel data) is not the original speech data anymore
because the speech data is stretched and modified in the time
axis when aligned, and it is not guaranteed that each frame is
aligned perfectly.

Several other approaches have been proposed that do not
use (or use minimally) parallel data of the source and the
target speakers [19, 20, 21, 22]. In [19], for example, they
model the spectral relationships between two arbitrary speak-
ers (reference speakers) using GMMs, and convert the source
speaker’s speech using the matrix that projects the feature
space of the source speaker into that of the target speaker
through that of reference speakers. As a result, parallel data
from the source and target speakers is not required (however,
they use the parallel data of reference speakers). In [21],
they first obtained codebooks (eigenvoice) using the paral-
lel data of reference speakers, and achieved many-to-many
VC by mapping the source speaker’s speech into eigenvoice
and the eigenvoice into target speaker’s speech (however, this
approach also needs parallel data among reference speakers
when creating the eigenvoice).

In this paper, we propose a totally-parallel-data-free!
VC method using a novel energy-based probabilistic model,
which we call an “adaptive restricted Boltzmann machine”
(ARBM). An ARBM is aimed at extracting latent, phonolog-

It means that the method requires neither the parallel data of a source
speaker and target speaker, nor the parallel data of reference speakers.



Fig. 1. Graphical representation of an ARBM.

ical features from the speech data uttered by several speakers
while separating speaker-dependent information and speaker-
independent information. This model consists of a visible
layer and a hidden layer having connections between visible-
hidden units like an RBM, but the weights of the connections
vary with the speaker. Furthermore, we define the weights
as a product of speaker-independent and speaker-dependent
weight matrices, and these weights can be simultaneously
optimized so as to maximize the likelihood of speech data
that contains multiple speakers (not required to be parallel
data). Many-to-many VC using an ARBM is conducted by
replacing the speaker-dependent features of a source speaker
with those of a target speaker while retaining the speaker-
independent features.

2. ADAPTIVE RESTRICTED BOLTZMANN
MACHINE

We define a graphical, probabilistic model called an adap-
tive restricted Boltzmann machine (ARBM) as shown in Fig-
ure 1. In addition to visible units v € R’ and hidden units
h € {0, 1}’ appearing in conventional RBMs [23], we intro-
duce identity units s € {0, 1} that represent which speaker
utters the sentence (I, J, and K indicate the numbers of vis-
ible units, hidden units, and identity units, respectively). For
example, the expression s, = 1,Vsp = 0 (K’ # k) means
that the input vector v belongs to the kth speaker. In this
model, connections exist that are controlled by s between vis-
ible units and hidden units. We define a connection-weight
matrix W (s) as follows:

W(s) = A®3 sW + B ®j3 s, €))

where W € R*7 is a speaker-independent weight matrix,
and third-order tensors A € RIXIXK apd B € RIX/xK
adapt W for the specific speaker (the kth matrices A. . ; and
B. . ;; of the tensors A and B indicate an adaptive matrix and
a bias matrix for the kth speaker, respectively). X ®4 y indi-
cates an operator that takes an inner product of a third-order
tensor A’ unfolded along with the dth mode and a vector y
(e, X ®qy = >, yeXy where X, are mode-d unfolded
matrices of X).

Using the matrix W (s) defined in Eq. (1), the joint prob-

ability p(v, h, s) is defined as follows:

1
p(U7 h, S) = Ee_E(‘U,h7s) (2)
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where ||-||* denotes L2 norm. & € R?, b € R!, and ¢ € R’
are other parameters of the ARBMs, indicating the standard
deviations associated with the Gaussian visible units, a bias
vector of the visible units, and a bias vector of the hidden
units, respectively. The fraction bar in Eq. (3) denotes the
element-wise division.

Because there are no connections between visible units or
between hidden units, the conditional probabilities p(h|v, s)
and p(v|h, 8) form simple equations as follows:

pvi = vlh, ) = N(vlbi + W(s),.ho?)  (5)
phy =1v.8) = S(e; + W) (5. ©)

where W (s); . and W (s). ; denote the ith row vector and jth
column vector of W (), respectively. N(-|p, 0?) and S(-) in-
dicate a Gaussian probability density function with the mean
¢ and variance o2 and an element-wise sigmoid function.

As for parameter estimation, the parameters of ARBMs
© = {W, A,B,b,o,c} can be simultaneously optimized so
as to maximize the log-likelihood £(®) using N training data
{vn, Sn}évzl):

L(®) = long(vn,sn) = ZlogZp(vn,h,sn). (7
n n h

Differentiating partially with respect to each parameter, we
obtain:
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where (-)data and (-)model indicate expectations of the train-
ing data and the inner model, respectively. The update rules
for the other parameters b, o, and c are the same as in [23]. It
is generally difficult to compute the expectations of the inner
model {-)moder in Egs. (8), (9), and (10); however, we can still
use contrastive divergence [24] and efficiently approximate
them with the expectations of the reconstructed data (-) econ. -
Using the gradients in Egs. (8), (9), and (10), each parameter
can be updated using stochastic gradient descent.
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Fig. 2. Procedure of voice conversion using an ARBM.

3. APPLICATION TO MANY-TO-MANY VC

In this section, we describe how an ARBM is applied to VC
tasks. As shown in Figure 2, each parameter of an ARBM is
simultaneously estimated using training data that contains the
speech uttered by K reference speakers (Step 1). Then, us-
ing a small amount of speech data of the source speaker and
the target speaker, we estimate the additional adaptive param-
eters A’ = A, Us A, , B = B, Us B; using Egs. (9) and
(10), where A, A;, B, and B; are an adaptive matrix for
the source speaker, an adaptive matrix for the target speaker,
a bias matrix for the source speaker, and a bias matrix for the
target speaker, respectively, and U, indicates a concatenate
operation along with mode-d, while fixing the other parame-
ters (Step 2). Here, we extend the identity variable s to have
the length of K + 2, and update the parameters A and B as
A+ AUz A" and B + B Us B/, respectively. In Step 3, we
calculate the latent features (hidden units) from the input fea-
tures (acoustic features such as MFCCs) of the source speaker
v, as follows:

iL £ I['?‘p(h|'us,ss)[h‘]

= S(e+W(s)"(75))

= S(e+ (AW +B,)"(23)), an
where s, is the vector where the (S + 1)th element is set to
be 1, and the other elements are set to be 0. As Eq. (11) in-
dicates, the latent features are obtained using the weight ma-
trix that is adapted to the source speaker from the speaker-
independent weights W. Because the column vectors of the
adapted weight matrix are similar to the patterns appearing
in the source speaker’s acoustic features, the obtained latent
features h represent speaker-independent, possibly phonolog-
ical, information. Therefore, when we want to convert the

speech so that it is as if the target speaker spoke, without
changing the phonological information, we just calculate the
visible units from the h using the identity units s; (a vector
whose (S + 2)th element is 1 and the others are 0), indicating
that the target speaker spoke the speech (Step 4). The con-
verted acoustic features for the target speaker are obtained as
follows:

~ A
0 = Epy)he V)

=b+ (AW + B,)h,

By

12)

showing that the converted speech is generated from the
phonological information h and the weight matrix (acoustic-
feature patterns) that is adapted to the target speaker. In
addition, as Egs. (11) and (12) indicate, our VC method is
based on a non-linear function that maps the acoustic features
of the source speaker v, to those of the target speaker v;.

In practice, we can consider that there are many cases
where we have a sufficient number of speakers but only min-
imal speech data for each speaker. In such cases, although
training data for estimating W is quantitatively sufficient, that
for estimating .4 and B is so scarce that it may cause errors
in the estimation or over-fitting. Therefore, we practically re-
duce the number of parameters by approximating each matrix
A. . in Aand B, . ; in B with a diagonal matrix and a ma-
trix whose column vectors are the same, respectively, and will
report the results in our experiments.

4. EXPERIMENTS

4.1. Conditions

In our VC experiments, we evaluated the performance of our
model, an ARBM, using the TIMIT? speech corpus that con-
tains speech data uttered by American English speakers of
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Table 1. Performance of our method (SDIR [dB]).
# of hidden units 128 192 256 512

female-to-female 7.18 7.26 7.30 7.14
female-to-male 764 781 7.81 7.82
male-to-female 7.50 754 7.61 17.48
male-to-male 7.86 8.00 8.03 8.06
avg. 754 7.65 17.69 7.63
female male female male

Fig. 3. Left to right: estimated W, A, and B.

various dialects. From the corpus, we randomly selected 38
speakers (14 females and 24 males) and used the speech of
five sentences from each speaker for the parameter estimation
(approximately 270,000 frames in total). As an input vector
(set to visible units), we used 32-dimensional mel-frequency
cepstral coefficients (MFCCs) that were calculated from 513-
dimensional STRAIGHT[25] spectra (i.e., I = 32). As for
the number of hidden units, we compared the performance by
changing the number as J = 128, 192, 256, and 512. In the
training of the ARBM, we used a learning rate of 0.005, a
momentum of 0.9, and a batch-size of 50, and set the number
of iterations as 500.

For the evaluation of the proposed method, we used pairs
of speech data of four female and four male speakers selected
from the reference speakelrs3 (28 combinations in total), con-
verted the MFCCs for each pair, decoded the MFCCs back
to STRAIGHT spectra using filter-theory [26], and compared
the performance of cross/same-sex VC in the spectrum space.
Here, the speech data used for the evaluation (for calcula-
tion of SDIR) were not included in the training data, and
had the same contents (two sentences) spoken by each of the
speakers. We evaluated each configuration (female-to-female,
female-to-male, male-to-female, and male-to-male) by taking
an average of SDIR (spectral distortion improvement ratio),
which is calculated as follows:

524 Vild) = V()
SDIR[dB] = 101log; = , 13
=180 S Vi v

where V,, V, and V, are spectrograms (time-frequency
STRAIGHT-spectral matrices) of the source speaker’s speech,

3Essentially, it is possible to estimate the speaker-specific parameters for
the speakers used in evaluation as in Step 2 in Fig. 2; however, in our exper-
iments, these parameters were estimated simultaneously in Step 1 in Fig. 2
due to the limited number of speakers in the corpus.
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Fig. 4. Log-spectrum from a source speaker and the recon-
structed spectrum (above), and log-spectrum from a target
speaker and the converted spectrum from the source speech
to the target speech (below).

target speaker’s speech, and converted speech, respectively.
The higher the value of SDIR is, the better the performance
of the VC is. V and V, were spectra decoded from MFCC
of parallel data of the two speakers, which was created using
dynamic programming.

4.2. Results of parameter estimation

Figure 3 shows the actually-estimated parameters of an
ARBM, W (partially), A, and B. The vertical axis indi-
cates the dimension of the MFCCs (the first dimension at
the top). Since we approximate the adaptive matrix A. . j
as a diagonal matrix, we plot only the diagonal elements in
columns for A in Figure 3 (Similarly, we plot the represen-
tative vectors for each speaker for 13.) For both A and 5 in
Figure 3, the 14 column vectors on the left side and the 24
column vectors on the right side correspond to the female
speakers and male speakers, respectively.

As shown in Figure 3, we see that each column in W
may indicate the phonological pattern of MFCCs. The most
interesting point is that each column in 4 (and B as well)
that corresponds to the female speakers differs largely from
that of male speakers, and the columns corresponding to the
same sex differ slightly from each other. This agrees with
the intuition that when we try to recognize the identities of
speakers, we feel the differences between the sexes larger than
the differences between people.



4.3. VC performance

First, we list the results of the proposed method in Table 1,
showing the SDIRs of each configuration (female-to-female
VC, female-to-male VC, male-to-female VC, and male-to-
male VC) with their overall averages (“avg.”) when changing
the number of hidden units of an ARBM. For example, for
“female-to-female” we converted the speech of each of four
female speakers into that of the other three female speakers,
and took the average of any combinations. As shown in Ta-
ble 1, the more hidden units we give, the more the VC per-
formance was improved, with some exceptions. Comparing
the results of 512 hidden units to that of 256 hidden units, on
the VC to male (female-to-male and male-to-male) the results
were better with 512 hidden units, whereas on the VC to fe-
male (female-to-female and male-to-female) the results were
better with 256 hidden units. (Consequently, we got better
performance with the case of 256 than the case of 512 in the
average SDIR). This is because as the number of parameters
was increased, the model became overfit. (The ratio of female
to male speakers used for the training was 14 to 28, and the
fact that the model with 512 hidden units strongly responded
to male speaker’s speech implies overfitting.)

Next, we show an example of the converted speech from
a female speaker (identified with “FCJFO” in the corpus) to a
male speaker (“MWARO”) using our method in Figure 4. In
this example, we calculated MFCCs from the log-spectrum
(dotted line in upper half of Figure 4) at a certain frame
of FCJFO’s speech, estimated h using the weight matrix of
the ARBM that adapted to FCJFO, and reconstructed log-
spectrum (solid line in lower half of Figure 4) from the
converted MFCCs using the weight matrix that adapted to
MWARQO. For reference, we also plotted the reconstructed
log-spectrum using the weight matrix adapted to FCJFO af-
ter estimating h (solid line in upper half of Figure 4), and
original log-spectrum of MWARO that should be the target
(dotted line in lower half of Figure 4). As shown in Figure 4,
we can say that the converted spectrum more or less captures
the characteristics of the target speaker’s spectrum; e.g., the
frequencies of spectral peaks (formant information) in low
frequencies are similar to those of the target speaker (as for
the source speaker’s speech, the reconstructed spectrum for
FCIJFO is also close to the original spectrum of FCJF0). For
both speakers, the reconstructed high-frequency spectra differ
greatly from the original spectra. This is due to the recon-
struction from MFCCs to spectra. The information for the
high frequencies is missing when reconstructed. As shown in
Figure 4, our proposed method has a great advantage in that
even though we did not train a model of the direct conversion
from FCJFO to MWARO and never used parallel data during
the training, the FCJFO’s speech was converted into that of
MWARO.

5. CONCLUSIONS

In this paper, we proposed a many-to-many voice conversion
method that does not require any parallel data during train-
ing, by separating speaker-dependent information from the
phonological information in speech data. To do this, we also
proposed an extension model of an RBM, namely an ARBM,
which may be applicable to various other tasks such as con-
trolling emotions in speech, speaker identification, and object
recognition. For example, in speaker identification, it would
be possible to identify the speaker by estimating the identity
units s after training the ARBM in the same manner. Further-
more, the ARBM can separate the phonological information
and speaker-related information from speech; therefore, the
speaker-independent phonological information may improve
speech recognition accuracy. In the future, we will exam-
ine a simultaneous estimation method for speaker identity and
speech recognition.
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